Maths - Year 4

Calculating 11: Using multiplying facts to solve dividing problems

Key Vocabulary	
Inverse	The reverse or the opposite.
Factor	A number that divides into another number exactly, e.g. 4 is a factor of 8.
Fraction	A part of a whole amount e.g. $1 / 3$
Remainder	Something that is left over when other parts have been used.
Grouping/ Sharing	Occurs in dividing when we know an amount and want to find out how many times a different amount will go into it, e.g. 2 goes into 10 five times.

Mathematical Skills

- Find halves, quarters and eighths of a number or quantity.
- Record dividing facts and the inverse multiplying facts.
- Related halving to dividing into 2.
- Use multiplying facts as a strategy when dividing.
- Complete calculations accurately using the short written method of dividing.
- Show understanding of the distributive property of multiplying when using multiplying facts as a strategy for dividing.
- Use a times table grid square and the distributive property of multiplying to derive dividing facts.
- Describe part of an array as a fraction of the whole array.
- Explain links between finding fractions and dividing.
- Explain remainders in ways that are consistent with the context of the dividing problems.

Mathematical Methods

A halving strategy e.g. finding halves, quarters and eighths.

Cut	Number of parts
Ist cut	2
2nd cut	4
3rd cut	8

- Using a halving strategy with dividing problems in real-life contexts.

- Using multiplying facts as a strategy for dividing.
E.g. $1 \times 8=8$
$8 \div 8=1$
$2 \times 8=16 \quad 16 \div 8=2$
$3 \times 8=24 \quad 24 \div 8=3$
$4 \times 8=32 \quad 32 \div 8=4$
$8 \times 8=64 \quad 64 \div 8=8$

- Using the short written method of dividing.

Finding fractions of amounts using multiplying and dividing facts e.g. $6 \times 4=24$
$4 \times 6=24$
$1 / 6 \times 5=5 / 6$
$24 \div 6=4$
$24 \div 4=6$

- Working with remainders in problems e.g. how many 30 p fete games could I play with a total of $£ 1$?

