Pattern and Algebra 4: Looking for patterns and generalising

Key Vocabulary	
Multiple	The product of two whole numbers.
Factor	A number that divides into another number exactly.
Common factor	A whole number that divides into two or more other numbers exactly.
Sequence	An ordered list of numbers, shapes or objects.
term	One of the numbers in a sequence.
Generalise	Make a statement about a whole group of objects or situations.
Volume	How much space something takes up, often meas- ured in cm^{3} or m^{3}.
Square	When a number is multiplied by itself, the product is number ealled a square number, e.g. $3 \times 3=3^{2}=9$, so 9 is a square number.
Cube number	When a number is multiplied by itself twice, the product is called a cube number, e.g. $2 \times 2 \times 2=2^{3}=8$, so 8 is a cube number.

Mathematical Skills

- Use knowledge of factors, multiples and divisibility flexibly and systematically to deduce general rules and explain them clearly.
- Work systematically to explore nonlinear sequences to find patterns from which they deduce general rules.
- Explain that when a number is multiplied by itself the product can be called a square number.
- Use and read square number notation e.g. 5^{2}.
- Make connections between square numbers and area and the notation used for units of area (e.g. cm^{2}).
- Explain that when a number is multiplied by itself twice we call this a cube number.
- Use and read cube number notation e.g. 4^{3} is 4 cubed.

Mathematical Methods

- Testing general statements about factors, multiples and divisibility e.g. a number if divisible by 3 if the sum of its digits is divisible by 3 .

- Writing general rules for number rod designs.

$$
(2 \times 2 \mathrm{~cm})+1 \mathrm{~cm}=5 \mathrm{~cm}
$$

- Writing general rules for growing number rod sequences e.g.

- Generalising about square numbers.
- Exploring square numbers.

$2 \times 2=4$
$3 \times 3=9$
$4 \times 4=16$
$5 \times 5=25$

Generalising about the factors of square numbers.

1	4	9	16	25
1	1,4	1,9	1,16	1,25
	2	3	2,8	5
			4	

- Generalising about cube numbers.

$$
\begin{aligned}
& 1 \times 1 \times 1=1^{3}=1 \\
& 2 \times 2 \times 2=2^{3}=8 \\
& 3 \times 3 \times 3=3^{3}=27 \\
& 4 \times 4 \times 4=4^{3}=64 \\
& 5 \times 5 \times 5=5^{3}=125 \\
& 6 \times 6 \times 6=6^{3}=216 \\
& 7 \times 7 \times 7=7^{3}=343 \\
& 8 \times 8 \times 8=8^{3}=512 \\
& 9 \times 9 \times 9=q^{3}=72 q \\
& 10 \times 10 \times 10=10^{3}=1000
\end{aligned}
$$

Can you..?

- Write a number between 2000 and 3000 that is divisible by 4.

Look at the rod pattern. What would term 10 be?

Terml Term 2 Term 3 Term 4 Term 5

Find two square numbers that add up to 45 together?

- Find two cube numbers that, together, add up to 407?

