Maths - Year 6

Geometry 1: 2D shapes and angles

Key Vocabulary		Mathematical Skills - Explain that the equal angles in an isosceles triangle are opposite the equal sides, and that the smallest angle is opposite the shortest side. - Explain that the opposite sides of a parallelogram must be equal in length for both pairs to be parallel, and that opposite angles in a parallelogram are equal. - Illustrate the properties of 2D shapes by adding symbols and labels to diagrams, e.g. with 'single' or 'double' angle symbols, or the conventional symbols for parallel lines. - Use their knowledge that vertically opposite angles are equal to find missing angles.
Turn	Move in a circular direction wholly or partly round an axis or point.	
Angle	An amount of turn or rotation.	
Degree	A unit to measure the size of a turn.	
Clockwise/anticlockwise	The same direction as the hands on a clock move/the opposite direction as the hands of a clock move.	
Opposite angles	Angles that are opposite one another at a specific vertex and are created by two straight intersecting lines.	
Supplementary angles	Angles that sum up to 180 degrees (180°).	
Equilateral triangle	A triangle with all 3 sides of equal length.	
Scalene triangle	A triangle that has 3 unequal sides.	
Isosceles triangle	A triangle that has 2 equal sides.	
Perimeter	The distance around a shape.	
Quadrilateral	A polygon with 4 sides. (A polygon is a flat geometric shape with straight sides.)	
Bisect	To split something into equal halves.	
Dissect	Partition a shape into smaller pieces.	

- Constructing triangles.
- Exploring quadrilaterals.

Rhombus

Square

Kite

Exploring angles in regular polygons.

Shape	Number of sides or angles	Sum of interior angles	Size of each angle
equilateral triangle	3	180°	60°
square	4	360°	90°
regular pentagon	5	540°	108°
regular hexagon	6	720°	120°
regular heptagon	7	900°	128.57° (to 2 d.p.)

Finding missing angles-introducing vertically opposite angles.

Can you..?

- Can you construct a right-angled isosceles triangle whose equal sides are 8.5 cm in length?
- Can you work out the size of angle a ?

- Can you identify angles b, c and d ?

