Maths - Year 6

Geometry 2: Circles

Mathematical Methods

- Understanding the parts and properties of a circle.

$$
d=2 r \text { and } r=\frac{1}{2} d \text { or } r=d \div 2
$$

- Investigating the relationship between circumference and diameter.

Object	Circumference, $\boldsymbol{C} \mathbf{~ c m}$	Diameter, $\boldsymbol{d} \mathbf{~ c m}$	$\boldsymbol{C} \div \boldsymbol{d}$ (to 2 d.p.)
tin can	23.8	7.4	3.22
CD	38.4	12.0	3.20
flower pot (base)	80.8	25.3	3.19
plate	83.2	26.7	3.12

$$
C \div d \approx 3.14 \text { so } C \approx 3.14 d
$$

- Using the relationship between circumference and diameter e.g. using the diameter of a circle to calculate the circumference.

$$
C \approx 3 \cdot 14 d
$$

Solving problems using the relationship between circumference and diameter e.g. designing a new running track.

Circumference, C, of the circle is $15 \times 2=30 \mathrm{~m}$.
$C \approx 3.14 d$
$30 \approx 3 \cdot 14 d$
$d \approx 30 \div 3 \cdot 14$
Circle's diameter is approximately 9.55 m .

Can you..?

- Bob has labelled the parts of a circle. Do you agree with his labels? Can you explain why?

- Can you explain the relationship between the diameter and radius of any circle?
- Alexi measures the radius of a circle as 19 mm . Can you identify the length of the diameter?

Explain your thinking.

