Maths - Year 6

Pattern and Algebra 4: Using symbols and letters for variables and unknowns

	Key Vocabulary	Mathematical Skills - Identify the term-to-term rule in a				
Term	One of the numbers in a sequence.	linear sequence, e.g. in the sequence				
Equation	A statement that the values of two mathematical expressions are equal (indicated by the sign =).	38, 43, 48, 53, the term-to-term rule is 'add 5'. - Describe a rule for finding the general				
Expression	A combination of numbers, variables and function e.g. 2n + 6	term of a linear sequence and express this with an algebraic expression, e.g.				
Algebra	The part of mathematics in which letters and other general symbols are used to represent numbers and quantities in formulae and equations.	5n + 33. - Explain algebraically how 'think of a number' problems work. - Explain the general relationship				
Equivalent	Different ways of representing the same value.	between an 'input' (x) and an				
Inverse	The reverse or the opposite.	'output' (y) for a particular function (e.g. for a function described by y = 3x, y is				
Factor	A number that divides into another number exactly.	always three times x, x is always one				
Multiple	The product of two whole numbers larger than one, e.g. 15 is a multiple of 3 and of 5.	third of y). - Identify a missing input or output for a given function machine, and a missing				
Prime number	A whole number with exactly two different factors, which are 1 and itself.	instruction, e.g. '× 3' for a given set of inputs and outputs.				
Prime factor	The smallest parts a composite number can be divided into, e.g. the prime factors of 12 are 2, 2 and 3, because 2 x 2 x 3 = 12.	- Write an equation to show the general relationship between input and output for a given function, represented as x				
Composite number	Any positive whole number that is not a prime number.	and y respectively, e.g. y = 3x. - Use tests of divisibility to sort numbers.				
Commutative property	When adding or multiplying 2 numbers, the answer will be the same no matter which order the numbers are in.	- Describe the commutative properties of adding and of multiplying in general terms, including algebraically,				
Associative property	When adding or multiplying, the answer will be the same no matter how the numbers are grouped, e.g. $2+3+5=5+3+2$ and $2\times3\times5=5\times3\times2$	e.g. a + b = b + a, ab = ba Explain why adding and multiplying are commutative, while subtracting and dividing are not.				

Mathematical Methods

- Investigating rules and generalising with algebra e.g. finding the total from a starting point on a 100 square including the starting number, the two numbers to its right and the two numbers below it.

1	2	3	4	5	6	7	8	٩	10
Ш	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40

Starting number	Calculation	Result
I	I + 2 + 3 + II + 2I	38
2	2 + 3 + 4 + 12 + 22	43
3	3 + 4 + 5 + 13 + 23	48
4	4 + 5 + 6 + 14 + 24	53
5	5 + 6 + 7 + 15 + 25	58
6	6 + 7 + 8 + 16 + 26	63
7	7 + 8 + 9 + 17 + 27	68
8	8 + 9 + 10 + 18 + 28	73

5th term: 5 + (5 + 1) + (5 + 2) + (5 + 10) + (5 + 20) = 586th term: 6 + (6 + 1) + (6 + 2) + (6 + 10) + (6 + 20) = 637th term: 7 + (7 + 1) + (7 + 2) + (7 + 10) + (7 + 20) = 68

Generalising about linear sequences using symbols and letters e.g. creating a general rule for the growing pattern.

Term number	1	2	3	4	5	6	7	8
Number of sticks	6	Ш	16	21	26	31	36	41

Ist term: $I + (5 \times I) = 6$ or 1st term: $(1 \times 5) + 1 = 6$

2nd term: $I + (5 \times 2) = II$ or 2nd term: $(2 \times 5) + I = II$

3rd term: $I + (5 \times 3) = 16$ or 3rd term: $(3 \times 5) + I = 16$

10th term: $I + (5 \times 10) = 5I$ or 10th term: $(10 \times 5) + 1 = 51$

x

x x

 $1 + 5n, 5n + 1, (n \times 5) + 1$

- Generalising about 'think of a number' problems e.g.

Think of a number. Double it. Add 100.

Halve the result.

Take away the number you first thought of. Your answer is 50.

Think of a number. Double it. Add 100.

Halve the result. Take away the number you first thought of.

2x100 2x + 100

 $(2x \div 2) + (100 \div 2) = x + 50$

x + 50 - x = 50

- Using symbols to describe function machines.

- Generalising about divisibility

Number	5059	5179	5307	5402	5608				
Divisible by	(prime)	(prime)	3	2	2				
Number 5107		5235	5336	5409	5625				
Divisible by	(prime)	3, 5	2	3, 9	3, 5, 9				
Number	5171	5273	5340	5454	5735				
Divisible by	visible by (prime)		2, 3, 5, 10	2, 3, 9	5				

- Expressing general laws of arithmetic e.g.

$$4 \times 6 = 24$$

 $6 \times 4 = 24$
 $24 \div 6 = 4$ or $\frac{24}{6} = 4$
 $24 \div 4 = 6$ or $\frac{24}{4} = 6$

$$ab = c$$

 $ba = c$
 $c \div b = a \text{ or } \frac{c}{b} = a$
 $c \div a = b \text{ or } \frac{c}{a} = b$

Can you..?

- Identify the general rule for this growing pattern. Can you use letters or symbols to show this rule?

