Maths - Year 4

Calculating 6: Developing fluency with dividing facts to 12×12

Key Vocabulary	
Grouping	Occurs in dividing when we know an amount and want to find out how many times a different amount will go into it, e.g. 2 goes into 10 five times.
Halving	Dividing into two equal parts.
Dimensions	The measurements of a shape or object e.g. length, height, width, depth.
Area	An amount of surface.
Scale up/ scale down	Describes the amount by which something is in- creased or reduced to make it larger or smaller in proportion.

Mathematical Skills

- Write dividing sentences using the \div symbol.
- Write two dividing sentences for an array.
- Use knowledge of multiplying facts to work out dividing facts.
- Recall dividing facts related to multiplying facts to 12×12.
- Explain that we divide to find 'how many...in...', when 'sharing ...into...' and when scaling down, and know that all these cases can be written as dividing sentences.

Mathematical Methods

- Exploring a dividing context e.g. $20 \div 4=5$ or $5 \times 4=20$.
-Writing dividing sentences e.g. $60 \div 10=$

- Finding two dividing facts from an array e.g. $24 \div 4=6$ or $24 \div 6=4$

- Improving fluency with dividing facts e.g. noticing patterns with multiples of 3 in terms of doubling and halving.

- Using the inverse to derive missing numbers e.g. $40 \div \square=8 \quad(8 \times 5=40)$

Item	Total in 5 packs
Packs of rubbers	20
Sets of coloured pencils	40
Boxes of pencil sharpeners	45

- Dividing in a correspondence context e.g. 18 party gifts go into 6 party bags.

- Dividing in the context of working with areas e.g. $4 \mathrm{~cm} \times 7 \mathrm{~cm}=28 \mathrm{~cm}^{2}$ or $28 \mathrm{~cm}^{2} \div 4 \mathrm{~cm}=7 \mathrm{~cm}$.

- Dividing in a scaling problem e.g. converting a recipe for 20 down to 10 .

Oatcakes
Makes 20
80 g porridge oats 60 ml olive oil 20 g mixed seeds 120 g oatmeal

Can you..?

- There are 21 playing cards which can be used for a game. How many players can join if each player needs: a) 7 cards b) 3 cards?

- A forest path is being made with pieces of wood that are 4 m long. The path is 64 m . How many pieces of wood will be needed?

Work out $21 \div \square=7$

