Maths - Year 4

Measurement 5: Understanding and using units of capacity and volume

Key Vocabulary	
Capacity	How much a container can hold, measured in, e.g. millilitres (ml) or litres (I).
Volume	How much space something takes up, often measured in cm^{3} or m^{3}.
Container/vessel	A hollow object used for holding something, usually a liquid.
Litre (I)	A unit to measure capacity.
Millilitre (ml)	A unit to measure capacity. $1000 \mathrm{ml}=1 \mathrm{I}$
Equivalent	The same amount or value, represented in different ways e.g. 2000ml $=21$.
Equate	To be the same in quantity or value e.g. 1000 ml equates to 1 I.
Estimate/ approximate	Work out an answer or measurement that is nearly right, e.g. an estimate of 4×9 is nearly $4 \times 10=$ nearly 40.

Mathematical Skills

- Give a reasonable estimate of the capacity of a container or an everyday volume.
- Describe the difference between capacity and volume.
- Use understanding of place value to partition capacities or volumes.
- Compare and order capacities or volumes given in different metric units.
- Convert between millilitres and litres.
- Choose appropriate strategies for calculating with capacities and volumes.

Mathematical Methods

Calculating with litres and millilitres e.g. two 500 ml jugs will be needed to measure out 1 l of paint.

I ℓ
$500 \mathrm{ml} \times 2$

Converting between millilitres, litres and millilitres, and litres e.g. when mixing paint colours.

Colour A	Colour B	Colour C	New colour		
600 ml	500 ml	-	1100 ml	$1 \ell 100 \mathrm{ml}$	$1 \cdot 1 \ell$
-	500 ml	900 ml	1400 ml	$1 \ell 400 \mathrm{ml}$	$1 \cdot 4 \ell$
300 ml	1200 ml	-	1500 ml	$1 \ell 500 \mathrm{ml}$	1.5ℓ
600 ml	600 ml	600 ml	1800 ml	$1 \ell 800 \mathrm{ml}$	1.8ℓ
500 ml	500 ml	250 ml	1250 ml	$1 \ell 250 \mathrm{ml}$	1.25ℓ
1500 ml	-	750 ml	2250 ml	$2 \ell 250 \mathrm{ml}$	2.25ℓ
400 ml	580 ml	960 ml	1940 ml	$1 \ell 940 \mathrm{ml}$	1.94ℓ

- Problem solving with litres e.g. a racing car has a fuel tank with a capacity of 801 . In one race the car uses 1 of fuel every 0.5 laps of the track and the race lasts 230 laps. How many pit stops will the car need to make during the race to refuel?
- Problem solving with litres e.g. a racing car has a fuel tank with a capacity of 801 . In one race the car uses 11 of fuel every 0.5 laps of the track and the race lasts 230 laps. How many pit stops will the car need to make during the race to refuel?

Children could use their understanding of decimal fractions, doubling and place value to identify that the car will use 2ℓ of fuel each lap, so, since $2 \times 230=460$. That makes 460ℓ of fuel during the race. Then children could use their knowledge of number facts and place value to reason that 5 tanks of fuel would be 400 l (as $5 \times$ $8=40$, so

- More problem solving with litres and millilitres e.g. how many of bottle B will be needed for 500 ml of perfume?

A B C

Can you..?

- Which containers could Max use to measure exactly $1.5 \mathrm{~L}(1 \mathrm{l} 500 \mathrm{ml})$?

- Tom drinks 21 of liquid a day, Mary drinks 1700 ml of liquid a day and Anna drinks $1 / 4$ less than Tom a day. How much liquid a day do they drink altogether?
- A plan uses 5 litres of fuel every second. How many litres of fuel will the plane use per minute?

