Maths - Year 4

Pattern and Algebra 5: Looking for growing patterns in problem solving

Key Vocabulary	
Sequence	An ordered list of numbers, shapes or objects, e.g. 20, 25, 30...
Increasing	Getting larger in number or size.
decreasing	Getting smaller in num- ber or size.

Mathematical Skills

- Record growing patterns systematically using adding or multiplying.
- Record results systematically in a table.
- Use multiplying and dividing facts to calculate the values of terms in growing patterns.
- Compare the results of growing patterns in a table and notice patterns and relationships between the terms, the amount of Shapes used to make them and the position of the terms (first, second, third etc.)
- Notice patterns in the terms of doubling sequences.
- Work out rules for unfamiliar number sequences and devise rules to make up their own.

Mathematical Methods

Making growing pictures with Numicon Shapes.

Term	Shapes used	Total
1	$5+1+1$	7
2	$5+1+1+4+1$	12
3	$5+1+1+4+1+4+1$	17
4	$5+1+1+4+1+4+1+4+1$	22
5	$5+1+1+4+1+4+1+4+1+4+1$	27

- Exploring growing patterns in problem solving e.g. we need to arrange some tables so that a class of 32 children can all sit together.

Tables	Chairs
1	8
2	12
3	16
4	20

Tables	Chairs
1	$2 \times 4=8$
2	$3 \times 4=12$
3	$4 \times 4=16$
4	$5 \times 4=20$
5	$6 \times 4=24$
6	$7 \times 4=28$
7	$8 \times 4=32$

- Exploring growing number patterns.

- Exploring patterns with growing differences.

Term	Shapes	Total
1	1×2	2
2	3×2	6
3	6×2	12
4	10×2	20
5	15×2	30

Exploring doubling patterns in problems e.g. Ben is given a special money box for his eighth birthday. On his first birthday his parents had put $£ 1$ in it. They put in double this amount on his second birthday, and doubled the amount every year until his eighth birthday.

		32				88	
Ist	2nd	3rd	4th	5th	6th	7th	8th
£1	£2	£4	£8	£16	£32	£64	£128

Birthday	Amounts added (£)	Total (£)
Ist	I	I
2nd	$1+2$	3
3rd	$1+2+4$	7
4th	$1+2+4+8$	15
5th	$1+2+4+8+16$	31
6th	$1+2+4+8+16+32$	63
7th	$1+2+4+8+16+32+64$	127
8th	$1+2+4+8+16+32+64+128$	255

Can you..?

- Can you write a sequence for the number of chairs around these 2-shape tables? Continue it up to the 10th term.

Complete the sequence 3, \square 17, 24, $\square 38$
Work out the sequence for the growing number of yellow counters.

