Maths - Year 5
 Measurement 4: Estimating volume and capacity

Key Vocabulary	
Volume	How much space something takes up, often measured in cm^{3} or m^{3}.
Capacity	How much a container can hold, measured in, e.g. millilitres (ml) or litres (I).
Vertex/ vertices	A point where two sides meet in a flat shape, or a point where three or more edges meet in a 3D shape.
Square number	When a number is multiplied by itself, the product is called a square number, e.g. $3 \times 3=3^{2}=9$, so 9 is a square number.
Cube number	When a number is multiplied by itself twice, the prod- uct is called a cube number, e.g. $2 \times 2 \times 2=2^{3=} 8$, so 8 is a cube number.

Mathematical Skills

- Convert between cubic centimetres and millilitres or litres.
- Estimate the volume of a solid object in cubic centimetres.
- Estimate the volume of liquids in millilitres.
- Calculate the volume of a cuboid given the length, width and height.
- Describe what a cube number is.
- Calculate and recognise cube numbers (up to 6^{3}).
- Recognise and create 2D representations of 3D cubes and cuboids.

Mathematical Methods

- Finding the volume of a cuboid e.g. with Numicon 10 rods.

$10 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}=60 \mathrm{~cm}^{3}$.
- Drawing 2D representations of cuboids.

$$
\mathrm{B} \cdot \rightarrow
$$

- Building cubes and exploring cube numbers.

3 squared

3 cubed

- Introducing the equivalence between cubic centimetres and millilitres e.g. If 10 s -rod's $10 \mathrm{~cm}^{3}$ volume is equivalent to 10 ml , then a 1 -rod's volume is equivalent to 1 ml , a 2 -rod's 2 ml etc.

The rod makes the water level rise.

- Estimating and converting between volumes in cubic centimetres and millilitres e.g. $1 \mathrm{~cm}^{3}=1 \mathrm{ml}=0.001 \mathrm{l}$. Estimate the volume of the rubber ball by comparing it to 1 -rods ($1 \mathrm{~cm}^{3}$). Check your estimation using displacement e.g. the amount the water rises can be used to calculate the volume of the rubber ball.

$220 \mathrm{ml}-200 \mathrm{ml}=20 \mathrm{~cm}^{3}$
- Solving problems involving solid and liquid volumes and capacities e.g. designing plastic aquariums for shrimp.

Can you..?

- Rhian has twelve 6-rods. What are the dimensions of all the cuboids she can make using all her 6-rods?
- How many white 1-rods would you need to add to the cylinder to raise the water level to the 500 ml mark?

