Maths - Year 5

Numbers and the Number System 2: Exploring equivalence with fractions

Mathematical Methods

- Introducing improper fractions and mixed numbers—halves e.g. Half of a ten shape would be 5 but can be represented in different ways e.g. $1 / 2 \times 10=\frac{10}{2}=5$.
- Exploring connections between improper fractions and mixed numbers-halves.

Number of squares	Amount of blue in halves	Amount of blue in whole or mixed number
1	$\frac{1}{2}$	$\frac{1}{2}$
2	$\frac{2}{2}$	1
3	$\frac{3}{2}$	$1 \frac{1}{2}$
4	$\frac{4}{2}$	2
5	$\frac{5}{2}$	$2 \frac{1}{2}$
6	$\frac{6}{2}$	3
7	$\frac{7}{2}$	$3 \frac{1}{2}$
8	$\frac{8}{2}$	4
9	$\frac{9}{2}$	$4 \frac{1}{2}$
10	$\frac{10}{2}$	5

Exploring connections between improper fractions and mixed numbers-quarters.

Agree that $\frac{1}{4}$ of each tile is blue, and that with
2 tiles there are 2 blue quarters, which is the
same as $\frac{1}{2}$ of I tile.

Converting mixed numbers to improper fractions e.g.

$$
\frac{12}{5} \text { is the same as } 2 \text { whole ones and } \frac{2}{5}=\frac{22}{5}
$$

- Recognising equivalent fractions e.g.
\square

$$
\frac{1}{2}=\frac{6}{12}, \frac{3}{4}=\frac{9}{12}, \frac{1}{3}=\frac{4}{12}, \frac{5}{6}=\frac{10}{12}
$$

- Using equivalence to scale recipes up e.g. increasing the number of jugs of lemonade you are making.

- Illustrating equivalence with Numicon shapes e.g.

Can you..?

- What fraction of the tiles are coloured blue? Write this as an improper fraction.
- Now write it as a mixed number.
- Can you write $121 / 2$ in another way?

Complete $\frac{5}{8}=\frac{\square}{24}$

